The Relationship between Body Size and Lifespan

2017-04-21·
Juan Manuel Vazquez
Juan Manuel Vazquez
· 30 min read

Introduction

While aging is an inevitable process for most species, there is an incredible diversity of lifespans throughout the Tree of Life, ranging from a few days to several millenia. For researchers interested in the fundamental biology behind aging, seeing what aspects of an organism’s biology correlate to lifespan is an important first step on the path to finding concrete explanations behind their longevity.
For example, in 1975, Dr. Richard Peto published a paper where he established that the different sizes and lifespans of humans and mice didn’t really relate to their respective cancer rates. This was described as Peto’s Paradox, because the expectation was originally that over a lifetime, every cell will accumulate mutations that could eventually cause it to become cancerous; and if an animal had more cells, then this lifetime risk of cancer would only increase further. In fact, it turns out that there is no relationship between body size, lifespan, and cancer, which is the fact that underlies the focus of my own research!
As we will explore in this section, this paradox is further complicated by another unexpected relationship: animals that are larger tend to also live longer.

Graphing the Data

For this analysis, we will be using the AnAge database of ageing and life history in animals. This database has entries for over 4200 species of animals (also 2 plants and 3 fungi) with data like max lifespan, growth rates and weights at different life stages, descriptions, and metabolism, amongst other things.

First, let’s take a look at the data itself:

# These are the packages we will be using in this analysis
library(tidyverse)
options(readr.num_columns = 0)
library(ggpubr)
library(plotly)
library(kableExtra)
# Read the data into a dataframe:
anage <- read_tsv("data/anage_build14.txt", 
                  col_names = T, 
                  col_types = list(
                    "References" = col_character(),   # Needs to be specified or else its interpreted as <int>
                    "Sample size" = col_factor(c("tiny", "small", "medium", "large", "huge"), ordered = T),
                    "Data quality" = col_factor(c("low", "questionable", "acceptable", "high"), ordered = T)
                    )
                  )
# Look at the data using str()
anage %>% str()
## spc_tbl_ [4,212 × 31] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ HAGRID                          : chr [1:4212] "00004" "00005" "00007" "00008" ...
##  $ Kingdom                         : chr [1:4212] "Animalia" "Animalia" "Animalia" "Animalia" ...
##  $ Phylum                          : chr [1:4212] "Arthropoda" "Arthropoda" "Arthropoda" "Arthropoda" ...
##  $ Class                           : chr [1:4212] "Insecta" "Insecta" "Insecta" "Insecta" ...
##  $ Order                           : chr [1:4212] "Diptera" "Hymenoptera" "Hymenoptera" "Lepidoptera" ...
##  $ Family                          : chr [1:4212] "Drosophilidae" "Apidae" "Formicidae" "Nymphalidae" ...
##  $ Genus                           : chr [1:4212] "Drosophila" "Apis" "Lasius" "Bicyclus" ...
##  $ Species                         : chr [1:4212] "melanogaster" "mellifera" "niger" "anynana" ...
##  $ Common name                     : chr [1:4212] "Fruit fly" "Honey bee" "Black garden ant" "Squinting bush brown" ...
##  $ Female maturity (days)          : num [1:4212] 7 NA NA 15 NA ...
##  $ Male maturity (days)            : num [1:4212] 7 NA NA 15 NA NA NA 2920 4380 NA ...
##  $ Gestation/Incubation (days)     : num [1:4212] NA NA NA NA NA 13 NA 6 NA NA ...
##  $ Weaning (days)                  : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Litter/Clutch size              : num [1:4212] NA NA NA NA NA 120000 NA 350000 NA NA ...
##  $ Litters/Clutches per year       : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Inter-litter/Interbirth interval: num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Birth weight (g)                : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Weaning weight (g)              : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Adult weight (g)                : num [1:4212] NA NA NA NA NA ...
##  $ Growth rate (1/days)            : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Maximum longevity (yrs)         : num [1:4212] 0.3 8 28 0.5 100 67 100 152 46 60 ...
##  $ Source                          : chr [1:4212] NA "812" "411" "811" ...
##  $ Specimen origin                 : chr [1:4212] "captivity" "unknown" "unknown" "wild" ...
##  $ Sample size                     : Ord.factor w/ 5 levels "tiny"<"small"<..: 4 3 3 3 3 3 3 3 3 3 ...
##  $ Data quality                    : Ord.factor w/ 4 levels "low"<"questionable"<..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ IMR (per yr)                    : num [1:4212] 0.05 NA NA NA NA NA NA 0.013 NA NA ...
##  $ MRDT (yrs)                      : num [1:4212] 0.04 NA NA NA NA NA NA 10 NA NA ...
##  $ Metabolic rate (W)              : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Body mass (g)                   : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ Temperature (K)                 : num [1:4212] NA NA NA NA NA NA NA NA NA NA ...
##  $ References                      : chr [1:4212] "2,20,32,47,53,68,69,240,241,242,243,274,602,981,1150" "63,407,408,741,805,806,808,812,815,828,830,831,847,848,902,908,1143" "411,813,814" "418,809,811" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   HAGRID = col_character(),
##   ..   Kingdom = col_character(),
##   ..   Phylum = col_character(),
##   ..   Class = col_character(),
##   ..   Order = col_character(),
##   ..   Family = col_character(),
##   ..   Genus = col_character(),
##   ..   Species = col_character(),
##   ..   `Common name` = col_character(),
##   ..   `Female maturity (days)` = col_double(),
##   ..   `Male maturity (days)` = col_double(),
##   ..   `Gestation/Incubation (days)` = col_double(),
##   ..   `Weaning (days)` = col_double(),
##   ..   `Litter/Clutch size` = col_double(),
##   ..   `Litters/Clutches per year` = col_double(),
##   ..   `Inter-litter/Interbirth interval` = col_double(),
##   ..   `Birth weight (g)` = col_double(),
##   ..   `Weaning weight (g)` = col_double(),
##   ..   `Adult weight (g)` = col_double(),
##   ..   `Growth rate (1/days)` = col_double(),
##   ..   `Maximum longevity (yrs)` = col_double(),
##   ..   Source = col_character(),
##   ..   `Specimen origin` = col_character(),
##   ..   `Sample size` = col_factor(levels = c("tiny", "small", "medium", "large", "huge"), ordered = TRUE, include_na = FALSE),
##   ..   `Data quality` = col_factor(levels = c("low", "questionable", "acceptable", "high"), ordered = TRUE, include_na = FALSE),
##   ..   `IMR (per yr)` = col_double(),
##   ..   `MRDT (yrs)` = col_double(),
##   ..   `Metabolic rate (W)` = col_double(),
##   ..   `Body mass (g)` = col_double(),
##   ..   `Temperature (K)` = col_double(),
##   ..   References = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>

Using str() is a useful way of quickly seeing the different columns of data and the type of data in each. Of interest are the taxonomic columns, the Adult Weight column, and the Maximum Lifespan column. You can also use head() to look at the first few rows; here we’re using the kableExtra package to visualize the first 100 rows neatly.

anage %>% 
  head(n = 100) %>%
  kableExtra::kbl() %>%
  kable_material_dark(c("striped", "hover")) %>% 
  scroll_box(width = "100%", height = "500px")
HAGRIDKingdomPhylumClassOrderFamilyGenusSpeciesCommon nameFemale maturity (days)Male maturity (days)Gestation/Incubation (days)Weaning (days)Litter/Clutch sizeLitters/Clutches per yearInter-litter/Interbirth intervalBirth weight (g)Weaning weight (g)Adult weight (g)Growth rate (1/days)Maximum longevity (yrs)SourceSpecimen originSample sizeData qualityIMR (per yr)MRDT (yrs)Metabolic rate (W)Body mass (g)Temperature (K)References
00004AnimaliaArthropodaInsectaDipteraDrosophilidaeDrosophilamelanogasterFruit fly77NANANANANANANANANA0.3NAcaptivitylargeacceptable0.0500.04NANANA2,20,32,47,53,68,69,240,241,242,243,274,602,981,1150
00005AnimaliaArthropodaInsectaHymenopteraApidaeApismelliferaHoney beeNANANANANANANANANANANA8.0812unknownmediumacceptableNANANANANA63,407,408,741,805,806,808,812,815,828,830,831,847,848,902,908,1143
00007AnimaliaArthropodaInsectaHymenopteraFormicidaeLasiusnigerBlack garden antNANANANANANANANANANANA28.0411unknownmediumacceptableNANANANANA411,813,814
00008AnimaliaArthropodaInsectaLepidopteraNymphalidaeBicyclusanynanaSquinting bush brown1515NANANANANANANANANA0.5811wildmediumacceptableNANANANANA418,809,811
00009AnimaliaArthropodaMalacostracaDecapodaNephropidaeHomarusamericanusAmerican lobsterNANANANANANANANANANANA100.02wildmediumacceptableNANANANANA2,13,594
00011AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenserbrevirostrumShortnose sturgeon5657NA13NA120000NANANANA9325.000NA67.0454wildmediumacceptableNANANANANA440,454
00012AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenserdabryanusYangtze sturgeonNANANANANANANANANANANA100.0454wildmediumacceptableNANANANANA454
00013AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenserfulvescensLake sturgeon949029206NA350000NANANANA70000.000NA152.01wildmediumacceptable0.01310.00NANANA1,2,440,454,524
00014AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipensergueldenstaedtiiRussian sturgeon51104380NANANANANANANA63250.000NA46.0454wildmediumacceptableNANANANANA454
00015AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenseroxyrinchusAtlantic sturgeonNANANANANANANANANA202400.000NA60.022wildmediumacceptableNANANANANA22,454
00016AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenserruthenusSterlet21291460NANANANANANANA8800.000NA46.11captivitymediumacceptableNANANANANA1,454
00017AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenserschrenckiiAmur sturgeon45623285NANANANANANANA104500.000NA60.0454wildmediumacceptableNANANANANA454
00018AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipenserstellatusStar sturgeon32852190NANANANANANANA44000.000NA27.0454wildmediumacceptableNANANANANA454
00019AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipensersturioBaltic sturgeon46083467NANANANANANANA220000.000NA100.0454wildmediumacceptableNANANANANA454
00020AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeAcipensertransmontanusWhite sturgeon82126022NANANANANANANA448800.000NA104.022wildmediumacceptableNANANANANA22,454
00021AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeHusodauricusKaluga61136387NANANANANANANA550000.000NA55.0454wildmediumacceptableNANANANANA454
00022AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaeHusohusoBeluga sturgeon63874745NANANANANANANA1139600.000NA118.01wildmediumacceptableNANANANANA1,454
00023AnimaliaChordataActinopterygiiAcipenseriformesAcipenseridaePseudoscaphirhynchushermanniDwarf sturgeonNANANANANANANANANA27.775NA6.0454wildmediumacceptableNANANANANA454
00024AnimaliaChordataActinopterygiiAcipenseriformesPolyodontidaePolyodonspathulaMississippi paddlefish32852190NANANANANANANA49885.000NA55.0454wildmediumacceptableNANANANANA454
00025AnimaliaChordataActinopterygiiAmiiformesAmiidaeAmiacalvaBowfin15511460NANANANANANANA5362.500NA30.0454wildmediumacceptableNANANANANA454,520
00026AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillaanguillaEuropean eel45624015NANANANANANANA3629.450NA88.02captivitysmallacceptableNANANANANA2,232,454,523
00027AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillaaustralisShortfin eelNANANANANANANANANA4100.000NA32.0454wildmediumacceptableNANANANANA454
00028AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillabicolorIndonesian shortfin eelNANANANANANANANANANANA20.0454wildmediumacceptableNANANANANA454
00029AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguilladieffenbachiiNew Zealand longfin eelNANANANANANANANANA13000.000NA60.0523wildmediumacceptableNANANANANA454,523
00030AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillamarmorataMarbled eelNANANANANANANANANA11275.000NA40.0454wildmediumacceptableNANANANANA454
00031AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillamossambicaAfrican longfin eelNANANANANANANANANA412.500NA20.0454wildmediumacceptableNANANANANA454
00032AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillanebulosaLong-finned eelNANANANANANANANANA11000.000NA15.0454wildmediumacceptableNANANANANA454
00033AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillareinhardtiiSpeckled longfin eel73003650NANANANANANANA8965.000NA41.0454wildmediumacceptableNANANANANA454
00034AnimaliaChordataActinopterygiiAnguilliformesAnguillidaeAnguillarostrataAmerican eel16421642NANANANANANANA4031.500NA50.0583captivitysmallacceptableNANANANANA454,523,583
00035AnimaliaChordataActinopterygiiAtheriniformesAtherinidaeAtherinapresbyterSand smeltNANANANANANANANANANANA4.0454wildmediumacceptableNANANANANA454
00036AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeAtherinopsaffinisTopsmeltNANANANANANANANANANANA9.01wildmediumacceptableNANANANANA1
00037AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeAtherinopsiscaliforniensisJacksmeltNANANANANANANANANANANA11.01wildmediumacceptableNANANANANA1
00038AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeLabidesthessicculusBrook silverside120120NANANANANANANANANA2.0442wildmediumacceptableNANANANANA442
00039AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeLeuresthestenuisCalifornia grunionNANANANANANANANANANANA8.01wildmediumacceptableNANANANANA1
00040AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeMenidiaberyllinaInland silversideNANANANANANANANANANANA2.01wildmediumacceptableNANANANANA1
00041AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeMenidiaextensaWaccamaw silversideNANANANANANANANANANANA3.0454wildmediumacceptableNANANANANA454
00042AnimaliaChordataActinopterygiiAtheriniformesAtherinopsidaeMenidiamenidiaAtlantic silversideNANANANANANANANANANANA2.0454wildmediumacceptableNANANANANA454
00043AnimaliaChordataActinopterygiiAulopiformesSynodontidaeTrachinocephalusmyopsSnakefish730730NANANANANANANANANA7.0454wildmediumacceptableNANANANANA454
00044AnimaliaChordataActinopterygiiBeloniformesAdrianichthyidaeOryziaslatipesJapanese medakaNANA10NANANANANANANANA5.0683captivitymediumacceptableNANANANANA524,682,683,684,685,686,836
00045AnimaliaChordataActinopterygiiBeloniformesHemiramphidaeHyporhamphusmelanochirDusky sea garfish912912NANANANANANANA330.000NA10.0454wildmediumacceptableNANANANANA454
00046AnimaliaChordataActinopterygiiBeloniformesScomberesocidaeCololabissairaPacific sauryNANANANANANANANANANANA2.0454wildmediumacceptableNANANANANA454
00047AnimaliaChordataActinopterygiiBeryciformesBerycidaeBeryxsplendensAlfonsino21532737NANANANANANANANANA23.0454wildmediumacceptableNANANANANA454
00048AnimaliaChordataActinopterygiiBeryciformesTrachichthyidaeHoplostethusatlanticusOrange roughy64487208NANANANANANANA3850.000NA149.0454wildmediumacceptableNANANANANA22,454
00049AnimaliaChordataActinopterygiiBeryciformesTrachichthyidaeHoplostethusmediterraneusMediterranean redfishNANANANANANANANANANANANANAunknownsmalllowNANANANANA454
00050AnimaliaChordataActinopterygiiCharaciformesAlestiidaeBrycinusimberiSpot-tailNANANANANANANANANA165.000NA5.0454wildmediumacceptableNANANANANA454
00051AnimaliaChordataActinopterygiiCharaciformesAlestiidaeBrycinusmacrolepidotusSilversidesNANANANANANANANANA1100.000NA5.0454wildmediumacceptableNANANANANA454
00052AnimaliaChordataActinopterygiiCharaciformesAlestiidaeHydrocynusvittatusTiger fishNANANANANANANANANA15400.000NA8.0454wildmediumacceptableNANANANANA454
00053AnimaliaChordataActinopterygiiCharaciformesAlestiidaeMicralestesacutidensSharptooth tetraNANANANANANANANANA1.100NA3.0454wildmediumacceptableNANANANANA454
00054AnimaliaChordataActinopterygiiCharaciformesCharacidaeAstyanaxbimaculatusTwospot astyanaxNANANANANANANANANANANA18.01wildmediumacceptableNANANANANA1
00055AnimaliaChordataActinopterygiiCharaciformesCharacidaePiaractusbrachypomusPirapitingaNANANANANANANANANA13750.000NA28.0454wildmediumacceptableNANANANANA454
00056AnimaliaChordataActinopterygiiCharaciformesCitharinidaeDistichodusniloticusNile distichodusNANANANANANANANANA3410.000NA7.5583captivitysmallacceptableNANANANANA454,583
00057AnimaliaChordataActinopterygiiCharaciformesHepsetidaeHepsetusodoePike characidNANANANANANANANANA2200.000NA5.0454wildmediumacceptableNANANANANA454
00058AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosaaestivalisBlueback shad14601277NANANANANANANA110.000NA8.0454wildmediumacceptableNANANANANA454
00059AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosaagoneTwaite shadNANANANANANANANANA825.000NA25.0454wildmediumacceptableNANANANANA454
00060AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosaalabamaeAlabama shadNANANANANANANANANANANA4.0454wildmediumacceptableNANANANANA454
00061AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosaalosaAlice shad16421277NANANANANANANA2200.000NA10.0454wildmediumacceptableNANANANANA454
00062AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosacaspiaCaspian shadNANANANANANANANANA65.000NA7.0454wildmediumacceptableNANANANANA454
00063AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosachrysochlorisBlue herringNANANANANANANANANA935.000NA4.0454wildmediumacceptableNANANANANA454
00064AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosamacedonicaMacedonia shadNANANANANANANANANA330.000NA10.0454wildmediumacceptableNANANANANA454
00065AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosamaeoticaBlack sea shadNANANANANANANANANANANA6.0454wildmediumacceptableNANANANANA454
00066AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosaponticaPontic shad730730NANANANANANANANANA7.0454wildmediumacceptableNANANANANA454
00067AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosapseudoharengusAlewife16421277NANANANANANANA110.000NA8.0454wildmediumacceptableNANANANANA454
00068AnimaliaChordataActinopterygiiClupeiformesClupeidaeAlosasapidissimaAmerican shad16781569NANANANANANANA3025.000NA13.0454wildmediumacceptableNANANANANA454,520
00069AnimaliaChordataActinopterygiiClupeiformesClupeidaeAmblygastersirmSpotted sardinella310350NANANANANANANANANA8.0454wildmediumacceptableNANANANANA454
00070AnimaliaChordataActinopterygiiClupeiformesClupeidaeClupeaharengusAtlantic herring10951095NANANANANANANANANA22.01wildmediumacceptableNANANANANA1,585
00071AnimaliaChordataActinopterygiiClupeiformesClupeidaeClupeapallasiiPacific herringNANANANANANANANANANANA19.0520wildmediumacceptableNANANANANA520,524
00072AnimaliaChordataActinopterygiiClupeiformesClupeidaeClupeonellacultriventrisBlack sea sprat912912NANANANANANANANANA5.0454wildmediumacceptableNANANANANA454
00073AnimaliaChordataActinopterygiiClupeiformesClupeidaeDorosomacepedianumAmerican gizzard shad730730NANANANANANANA1089.000NA6.0454wildmediumacceptableNANANANANA454
00074AnimaliaChordataActinopterygiiClupeiformesClupeidaeDorosomapetenenseThreadfin shad730730NANANANANANANANANA4.0454wildmediumacceptableNANANANANA454
00075AnimaliaChordataActinopterygiiClupeiformesClupeidaeEscualosathoracataWhite sardineNANANANANANANANANANANANANAunknownsmalllowNANANANANA454
00076AnimaliaChordataActinopterygiiClupeiformesClupeidaeGilchristellaaestuariaGilchrist’s round herringNANANANANANANANANANANA6.0454wildmediumacceptableNANANANANA454
00077AnimaliaChordataActinopterygiiClupeiformesClupeidaeHarengulajaguanaScaled herring365365NANANANANANANANANA3.0454wildmediumacceptableNANANANANA454,690
00078AnimaliaChordataActinopterygiiClupeiformesClupeidaePotamalosarichmondiaAustralian freshwater herringNANANANANANANANANANANA11.0454wildmediumacceptableNANANANANA454
00079AnimaliaChordataActinopterygiiClupeiformesClupeidaeSardinapilchardusEuropean pilchard730730NANANANANANANANANA15.0454wildmediumacceptableNANANANANA454,585
00080AnimaliaChordataActinopterygiiClupeiformesClupeidaeSardinellaauritaRound sardinella365365NANANANANANANA125.950NA7.0454wildmediumacceptableNANANANANA454
00081AnimaliaChordataActinopterygiiClupeiformesClupeidaeSardinellagibbosaGoldstripe sardinellaNANANANANANANANANANANA7.0454wildmediumacceptableNANANANANA454
00082AnimaliaChordataActinopterygiiClupeiformesClupeidaeSardinellalongicepsIndian oil sardine730719NANANANANANANA110.000NA4.0454wildmediumacceptableNANANANANA454
00083AnimaliaChordataActinopterygiiClupeiformesClupeidaeSardinopssagaxPacific sardine821821NANANANANANANA267.300NA25.0454wildmediumacceptableNANANANANA454,584
00084AnimaliaChordataActinopterygiiClupeiformesClupeidaeSprattussprattusEuropean sprat730730NANANANANANANANANA6.0454wildmediumacceptableNANANANANA454,585
00085AnimaliaChordataActinopterygiiClupeiformesClupeidaeTenualosatoliToli shadNANANANANANANANANANANANANAunknownsmalllowNANANANANA454
00086AnimaliaChordataActinopterygiiClupeiformesEngraulidaeAnchoacompressaDeepbody anchovyNANANANANANANANANANANA6.01wildmediumacceptableNANANANANA1
00087AnimaliaChordataActinopterygiiClupeiformesEngraulidaeCetengraulismysticetusAnchoveta365365NANANANANANANANANA4.0454wildmediumacceptableNANANANANA454
00088AnimaliaChordataActinopterygiiClupeiformesEngraulidaeEngraulisaustralisAustralian anchovyNANANANANANANANANANANA6.0454wildmediumacceptableNANANANANA454
00089AnimaliaChordataActinopterygiiClupeiformesEngraulidaeEngraulisencrasicolusEuropean anchovy365365NANANANANANANANANA3.0454wildmediumacceptableNANANANANA454
00090AnimaliaChordataActinopterygiiClupeiformesEngraulidaeEngraulisjaponicusJapanese anchovy365365NANANANANANANANANA3.0454wildmediumacceptableNANANANANA454
00091AnimaliaChordataActinopterygiiClupeiformesEngraulidaeEngraulismordaxCalifornian anchoveta365NANANANANANANANANANA7.0454wildmediumacceptableNANANANANA454,520
00092AnimaliaChordataActinopterygiiClupeiformesEngraulidaeEngraulisringensPeruvian anchovetaNANANANANANANANANANANA3.0454wildmediumacceptableNANANANANA454
00093AnimaliaChordataActinopterygiiCypriniformesBalitoridaeBarbatulabarbatulaStone loachNANANANANANANANANANANA7.0454wildmediumacceptableNANANANANA454
00094AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCarpiodescarpioRiver carpsuckerNANANANANANANANANA2524.500NA10.0454wildmediumacceptableNANANANANA454
00095AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCarpiodescyprinusQuillbackNANANANANANANANANA1617.000NA11.0454wildmediumacceptableNANANANANA454
00096AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCarpiodesveliferHighfin carpsuckerNANANANANANANANANANANA11.0454wildmediumacceptableNANANANANA454
00097AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomuscatostomusLongnose suckerNANANANANANANANANA1800.000NA20.0454wildmediumacceptableNANANANANA454
00098AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomuscommersoniiWhite suckerNANANANANANANANANA1617.000NA12.0454wildmediumacceptableNANANANANA454
00099AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomusmacrocheilusLargescale suckerNANANANANANANANANANANA15.0454wildmediumacceptableNANANANANA454
00100AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomusmicropsModoc suckerNANANANANANANANANANANA18.0454wildmediumacceptableNANANANANA454
00101AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomusoccidentalisSacramento suckerNANANANANANANANANANANA10.01wildmediumacceptableNANANANANA1
00102AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomusplatyrhynchusMountain sucker12771003NANANANANANANANANA9.0454wildmediumacceptableNANANANANA454
00103AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomusrimiculusKlamath smallscale suckerNANANANANANANANANANANA9.0454wildmediumacceptableNANANANANA454
00104AnimaliaChordataActinopterygiiCypriniformesCatostomidaeCatostomustahoensisTahoe suckerNANANANANANANANANANANA15.0454wildmediumacceptableNANANANANA454
00105AnimaliaChordataActinopterygiiCypriniformesCatostomidaeChasmistescujusCui-ui56575657NANANANANANANA1496.000NA41.0454wildmediumacceptableNANANANANA454

Note: using tibble from tidyverse also automatically shows only the first few rows of the dataset in the console if you call anage by itself.

All species

Let’s try graphing now. First, we will graph all the species; we will graph the adult weights versus their maximum lifespan, and color the datapoints by their Phylum:

# Create the basic plot
p.all <- anage %>% 
  ggplot(
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, color=Phylum, text=str_glue("Common Name: {`Common name`}<br>Data Quality: {`Data quality`}<br>Sample size: {`Sample size`}"))
  ) +
  geom_point(size=0.5) +
  scale_x_log10() +
  scale_y_log10() +
  labs(
    title='AnAge Species Adult Weight vs Lifespan',
    y='Adult Weight - log(g)',
    x='Maximum Longevity - log(yrs) '
  ) + 
  theme_pubclean() + 
  labs_pubr()
# Output the interactive plot
ggplotly(p.all)

(Note that we scaled the axes using a log-scale; this is done because we want to highlight orders-of-magnitude changes over small-scale change - in other words, we don’t care so much about the difference between 1-2 grams and 100-200 grams as much as a change between 1-10 grams and 100-1000 grams.)

You can see that the graph already has a clear upwards trend! However, there’s a bit of an issue that’s striking in the color scheme; where are our non-chordate species? The first guess I have is that it relates to size measurements - that’s relatively easy to check:

anage %>% 
  filter(!Phylum=="Chordata") %>% 
  select(Kingdom, Phylum, Genus, Species, `Common name`, `Maximum longevity (yrs)`, contains("weight")) %>% 
  kableExtra::kbl() %>%
  kable_material_dark(c("striped", "hover")) %>% 
  scroll_box(width = "100%", height = "1000px")
KingdomPhylumGenusSpeciesCommon nameMaximum longevity (yrs)Birth weight (g)Weaning weight (g)Adult weight (g)
AnimaliaArthropodaDrosophilamelanogasterFruit fly0.30NANANA
AnimaliaArthropodaApismelliferaHoney bee8.00NANANA
AnimaliaArthropodaLasiusnigerBlack garden ant28.00NANANA
AnimaliaArthropodaBicyclusanynanaSquinting bush brown0.50NANANA
AnimaliaArthropodaHomarusamericanusAmerican lobster100.00NANANA
AnimaliaCnidariaTurritopsisnutriculaImmortal jellyfishNANANANA
AnimaliaEchinodermataStrongylocentrotusfranciscanusRed sea urchin200.00NANANA
AnimaliaEchinodermataStrongylocentrotuspurpuratusPurple sea urchin50.00NANANA
AnimaliaMolluscaArcticaislandicaOcean quahog clam507.00NANANA
AnimaliaNematodaCaenorhabditiselegansRoundworm0.16NANANA
AnimaliaPoriferaCinachyraantarcticaEpibenthic sponge1550.00NANANA
AnimaliaPoriferaScolymastrajoubiniHexactinellid sponge15000.00NANANA
PlantaePinophytaPinuslongaevaGreat Basin bristlecone pine4713.00NANANA
FungiAscomycotaSaccharomycescerevisiaeBaker’s yeast0.04NANANA
FungiAscomycotaSchizosaccharomycespombeFission yeastNANANANA
FungiAscomycotaPodosporaanserinaFilamentous fungusNANANANA

None of the non-chordates in the AnAge database have any weight information - go figure! However, from the lifespan, we can see that some of these live a ridiculously long time:

# Filter anage based on the weird characteristics:
anage %>% 
  arrange(desc(`Maximum longevity (yrs)`)) %>% 
  head %>% 
  select(Kingdom, Phylum, Genus, Species, `Common name`, `Maximum longevity (yrs)`, `Adult weight (g)`, `Data quality`) %>%
  kableExtra::kbl() %>%
  kable_material_dark(c("striped", "hover")) %>% 
  scroll_box(width = "100%", height = "1000px")
KingdomPhylumGenusSpeciesCommon nameMaximum longevity (yrs)Adult weight (g)Data quality
AnimaliaPoriferaScolymastrajoubiniHexactinellid sponge15000NAquestionable
PlantaePinophytaPinuslongaevaGreat Basin bristlecone pine4713NAacceptable
AnimaliaPoriferaCinachyraantarcticaEpibenthic sponge1550NAquestionable
AnimaliaMolluscaArcticaislandicaOcean quahog clam507NAacceptable
AnimaliaChordataBalaenamysticetusBowhead whale2111.00e+08acceptable
AnimaliaChordataSebastesaleutianusRougheye rockfish2054.95e+02acceptable

Remember how I said that some animals live for millenia? Behold the humble sponge; specifically, Scolymastra joubini, which apparently lives for 15,000 years! Its worth noting the column “Data.quality” here; there’s some skepticism in the literature as to whether or not this is estimate is real, since its so incredible. Runners-up include the Great Basin bristlecone pine, the Ocean quahog clam, the Greanland Shark, and my favorite, the Bowhead Whale!

Chordates

Moving on, let us graph the chordates, and color by class. Also, while we’re at it, let’s quantify the relationship between size and lifespan using a linear regression:

anage.chordata <- anage %>% 
  filter(
    Phylum=="Chordata",
    !is.na(`Adult weight (g)`),
    !is.na(`Maximum longevity (yrs)`)
      )


# Basic Graph
p.chordata <- anage.chordata %>% 
  ggplot(
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, color=Class, text=str_glue("Common Name: {`Common name`}<br>Data Quality: {`Data quality`}<br>Sample size: {`Sample size`}"))
  ) +
  geom_point(size=0.5) +
  scale_x_log10() +
  scale_y_log10() +
  geom_smooth(
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`), 
    inherit.aes = FALSE,
    col="black",
    lty="dashed"
    )+
  labs(
    title='Chordates Adult Weight vs Lifespan',
    y='Adult Weight - log(g)',
    x='Maximum Longevity - log(yrs) '
  ) +
  theme_pubclean() + 
  labs_pubr()

# Output the interactive plot
ggplotly(p.chordata)
## `geom_smooth()` using formula = 'y ~ x'

Overall, there seems to be a positive trend; we can already see the outliers that are extremely long-lived for their size by hovering over the points to read the common names. As you can see, the longest lived chordates by far are the Rougheye Rockfish, at 205 years; and the Bowhead Whale, at 211 years. A little further down the y axis, we see many more fish, humans (!), and some more whales. Now we can look further at the data by clicking on the classes on the legend to hide those points.

Hide everything so that we can only see Actinopterygii, which is the class of ray-finned fish. This group accounts for almost all of the living fish species, and makes up half of all living vertebrates. As you can see, for any given weight of fish, you could probably find many short lived fish and a couple of really long-lived fish. In contrast, if you look only at Amphibians, you can see that based on our data they pretty much cluster tightly with the exception of the Olm, which lives a very long time for its size.

Looking at Aves, or birds, we can see that there’s actually a fairly clear positive relationship between size and longevity, with most of the density in the plot at the small-and-short-lived end of the tail, fanning out as you get larger and larger. Were I to venture a guess, this fan-shaped pattern is suggestive of the two sides of Peto’s Paradox: some of these birds seem to live longer as per the pattern, but some of them seem to be shorter-lived than one would expect. One thing that caught my attention was how emus and cassowaries, which are sister species, are all shorter-lived than the ostrich, which is at the root of the Ratite clade. While this alone means nothing, its small things of note like this that could lead to the start of some really interesting work!

Mammals

Now, while I may be biased, I want to look at the most interesting clade: mammals!

# Select all mammals with values for size and lifespan
anage.mammalia <- anage.chordata %>% 
  filter(
    Class == 'Mammalia')

# Graph!
p.mammalia <- anage.mammalia %>% 
  ggplot(
    aes(x=`Adult weight (g)`, y=`Maximum longevity (yrs)`, color=Order, text=str_glue("Common Name: {`Common name`}<br>Data Quality: {`Data quality`}<br>Sample size: {`Sample size`}"))
  ) +
  geom_point(
    # size=rel(2)
  ) +
  scale_x_log10() +
  scale_y_log10() +
  geom_smooth(
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`), 
    inherit.aes = FALSE,
    col="black",
    lty="dashed"
    )+
  labs(
    #title='A Positive Correlation Between Size and Lifespan Across All Mammals',
    x='Adult Weight [log(g)]',
    y='Maximum\nLongevity\n[log(years)]',
    caption = "Human Ageing Genomic Resources:\nAnAge Build 14, 2017"
  ) +
  theme_pubclean() + 
  labs_pubr()+
  theme(
    legend.position = "bottom",
    # text = element_text(size=24),
    # axis.title.y = element_text(angle=0, vjust = 0.5)
  )

#p.mammalia
ggplotly(p.mammalia) 
## `geom_smooth()` using formula = 'y ~ x'

Here we see the beautiful correlation between mammalian weight and lifespan! Take a moment to notice some of the subtle things this graph suggest. Rodents are actually shorter-lived as a clade than one would expect based on their size, while bats and primates are longer-lived than expected. A commonplace theory behind this is that the ability to escape terrestial predators allows bats and primates to avoid predators that would otherwise hunt them alongside existing terrestial prey, like rodents; since they are now less likely to die due to extrinsic predatorial dangers, genetic changes that allow for extended lifespan can take root and either be selected for actively or evolve neutrally.

The Three Clades: Chiroptera, Paenungulata, and Balaenidae

The three clades that I personally focus on are Chiroptera (bats), Paenungulata (elephants and their closest relatives), and Balaenidae (bowhead and right whales). Both elephants and whales describe extreme examples of size and lifespan in mammals, which leads to interesting questions about how they avoid having astronomically high rates of cancer. Bats, on the other hand, may not seem as interesting at first, but as I will show you next, represent a more robust way of answering the question of Peto’s Paradox.

Bats

anage.chiroptera <- anage.mammalia %>% 
  filter(Order=='Chiroptera')

# Once more, with vigor!
p.bats <- anage.chiroptera %>% 
  ggplot(
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, color=Family, text=str_glue("Common Name: {`Common name`}<br>Data Quality: {`Data quality`}<br>Sample size: {`Sample size`}"))
  ) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() +
  scale_alpha_discrete(range=c(0.5,1)) + 
  geom_smooth(
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, color=Family), 
    inherit.aes = F,
    se=F
    )+ 
  geom_smooth(
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, text="Chiroptera"), 
    inherit.aes = FALSE,
    col="blue",
    lty="dashed"
    )+
  geom_smooth(
      data = anage %>% filter(Class == 'Mammalia',!is.na(`Adult weight (g)`), !is.na(`Maximum longevity (yrs)`)), 
      method='lm', 
      aes(`Adult weight (g)`, `Maximum longevity (yrs)`, text="Mammalia"), 
      inherit.aes = FALSE, 
      col="black", lty="dashed", alpha=0.5
      ) +
  labs(
    title='Paenungulata Adult Weight vs Lifespan',
    y='Adult Weight [log(g)]',
    x='Maximum Longevity [log(yrs)]'
  ) +
  coord_cartesian(xlim=c(3e0,2e3), ylim=c(3e0,1e2))+
  theme_pubclean() + 
  labs_pubr()
## Warning: Using alpha for a discrete variable is not advised.

## Warning in geom_smooth(method = "lm", aes(`Adult weight (g)`, `Maximum
## longevity (yrs)`, : Ignoring unknown aesthetics: text

## Warning in geom_smooth(data = anage %>% filter(Class == "Mammalia",
## !is.na(`Adult weight (g)`), : Ignoring unknown aesthetics: text
ggplotly(p.bats)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Paenungulata

anage.paenungulata <- anage.mammalia %>% 
  filter(Order %in% c('Proboscidea','Sirenia', 'Hyracoidea'))

p.paen <- anage.paenungulata %>% 
  ggplot(
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, color=Family, text=str_glue("Common Name: {`Common name`}<br>Data Quality: {`Data quality`}<br>Sample size: {`Sample size`}"))
  ) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() + 
  geom_smooth(
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`), 
    inherit.aes = FALSE,
    col="blue",
    lty="dashed"
    )+
  geom_smooth(
    data = anage.mammalia, 
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`), 
    inherit.aes = FALSE, 
    col="black", lty="dashed", alpha=0.5
    ) +
  coord_cartesian(xlim=c(1e2,1e7), ylim=c(1e1,2e2))+
  labs(
    title='Paenungulata Adult Weight vs Lifespan',
    y='Adult Weight - log(g)',
    x='Maximum Longevity - log(yrs) '
  ) +
  theme_pubclean() + 
  labs_pubr()


ggplotly(p.paen)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Cetacea

anage.cetacea <- anage.mammalia %>% 
  filter(Order %in% c('Cetacea'))

p.cetacea <- anage.cetacea %>% 
  ggplot(
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`, color=Family, text=str_glue("Common Name: {`Common name`}<br>Data Quality: {`Data quality`}<br>Sample size: {`Sample size`}"))
  ) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() + 
  geom_smooth(
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`), 
    inherit.aes = FALSE,
    col="blue",
    lty="dashed"
    )+
  geom_smooth(
    data = anage.mammalia, 
    method='lm', 
    aes(`Adult weight (g)`, `Maximum longevity (yrs)`), 
    inherit.aes = FALSE, 
    col="black", lty="dashed", alpha=0.5
    ) +
  coord_cartesian(
    # xlim=c(1e2,1e7), ylim=c(1e1,2e2)
  )+
  labs(
    title='Cetacea Adult Weight vs Lifespan',
    y='Adult Weight - log(g)',
    x='Maximum Longevity - log(yrs) '
  ) +
  theme_pubclean() + 
  labs_pubr()


ggplotly(p.cetacea)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'